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ABSTRACT

Resonant periodic orbits, making # oscillations along the x-axis and m oscillations along the y-axis,
appear in a two-dimensional potential V = 3(4x? + By?) 4 higher-order terms whenever the ratio
AY2/BY/2 is near n/m. Such orbits can be found by means of a “third” integral in which small divisor
terms have been eliminated. Orbits whose initial conditions are near those of a stable resonant periodic
orbit are tube orbits. By finding the main periodic orbits, one can derive the main characteristics of the
totality of orbits. An application in the case A1/2/B%/2 ~ % is given. These considerations can be applied
to find the main types of orbits in various galactic models.

I. INTRODUCTION

In a previous paper (Contopoulos 1965) we explained the formation of resonant
periodic orbits and tube orbits in the case of a potential of the general form V = $(4x? 4
By?) + higher-order terms. The resonant periodic orbits make # oscillations along the
x-axis and m oscillations along the y-axis whenever the ratio of unperturbed frequencies
AV2/Bl2 is near n/m; the tube orbits always stay near the stable resonant periodic
orbits.

In the above paper we found the properties of the resonant periodic orbits and the tube
orbits by means of the third integral. The method was based on the elimination of the
secular terms of the third integral in the resonance case 4/2/B!/2 = yn/m. By using the
new form of the third integral, we could find the forms of the invariant curves on a
surface of section. Of special interest are the invariant points corresponding to resonant
periodic orbits; the stable resonant invariant points are surrounded by islands, corre-
sponding to tube orbits.

This method has been extended to near-resonance cases. In these cases, instead of
secular terms we have terms with small divisors, which may become very large.

In general, we may consider that a given ratio of unperturbed frequencies 4!/2/B/2
is ““near” many rational values #/m. If the difference |(4Y2/B'?) — (n/m)| is smaller
than a certain quantity e, then resonant periodic orbits making » and m oscillations
along the x- and y-axes, respectively, appear, followed by the tube orbits. If the potential
is of the form V = }(4«%+ By? — exy?, the quantity e is of order €%, where % is the
energy (Contopoulos 1966).

For any value of 4!/2/B'/2 we have an infinity of periodic and tube orbits of different
types. However, the most important of them correspond to small values of # and m.

In order to find theoretically the periodic orbits and the tube orbits of a certain type,
we have to eliminate the corresponding small divisor terms of the third integral. This
can be done by means of a computer program similar to the one used previously to give
tables of the coefficients of the third integral (Contopoulos 1966). The present method
takes care of the cases where these coefficients are infinite or large.

II. ELIMINATION OF SMALL DIVISORS
We consider, as an example, the potential

V = 3(Ax* + By?) — exy?. (1)
83
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84 G. CONTOPOULOS Vol. 153
The third integral is constructed in the usual way (Contopoulos 1960)
(1’1=CI310+€<I’1+..., (2)
where
By = 3(422 + X?) )

contains terms with small divisors of the form mA'? — nB'? in ®; nin_o.
In fact, we have

Bt min—s = —S (Primpn-s, H1)dl, (4)

Hy = —uay*, (5)

where

and (®y1,m1n—3, H1) is the Poisson bracket. This Poisson bracket is a polynomial of degree
m~+ ninx, X, y, ¥, and it can be easily expressed as a sum of trigonometric terms of the
form

g(2810)™12(2Bg) ™ 12 (S:IOI; [m AVt — f) — mBY2)

if the variables are replaced by the solutions of the unperturbed problem

1/2 1/2
om0 gy, y= RO G
(6)
X = (2®1)2 cos AY2(t — &), ¥V = (2®y)Y2 cos BY%,
where
$y = 3(By* + 17, (M)

my and #, are integers, and #, is always even. Among these terms, one can separate the

terms of the form

q(2B10)™2(2p0) 12 :lons [mAY2(t — t)) — nBY%]

which give rise to small divisor terms after integration. We have the cosine if m 4 # is
odd and the sine if m + # is even.

This procedure can be easily carried out by a computer program, which gives directly
the coefficient ¢g. This program is a slight modification of a program used to calculate the
terms of the third integral (Contopoulos 1966).

The elimination of the secular terms is effected as follows: By multiplying the integral
(2) by (mAY? — nBY?), we find the integral

¢$1 = P1(mAYV: — nB2) (8)

which does not contain small divisor terms of degree m + n. However, small divisors
appear in the term ®1 min (mAY? — nB!/2), of degree m + n + 2, which are of the form

[¢:1(2®10) + ¢2(290)]0, )

Q _ (2‘1’10)"’/2(2@20)"/2 sin
T mAY?: — uBY? cos

where

[mAY2(t — t) — nB'*]. (10)

Here we always have the sine if # -+ # is odd and the cosine if m + #» is even. At the
same time, one can construct equivalent forms of the third integral, beginning with
(2®10)? or (2d4)2, namely,
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No. 1, 1968 RESONANT PERIODIC ORBITS 85
¢ = (2P10)* + a1+ ... and ¢z = 2P)? Fedu+. ... (11)

These expansions give terms with small divisors, of degree m + # + 2, of the form
(2®10)¢’'Q and (2®4)q2’Q , respectively.
Then the integral

¢ = c(¢1 + age + cas) (12)
has no small divisor terms of degree m + n + 2 if
q1 + 61Q1’ =0, g2 -+ C2Q2' =0, (13)

and ¢ is any arbitrary constant. The values of ¢i, o, g1/, g2 are given by the computer,
hence ¢y, ¢; are easily calculated. To this integral we may add any multiple of

¢P4 = (2H)2 = (2491 + 2(13‘2)2 = (2(1310 —l“ 2‘1320)2 + €¢41 + e eey (14)

where H is the Hamiltonian; this integral does not give small divisor terms at all.
In order to avoid now the small divisor terms of degree m + n -+ 4, we find the terms
with small divisors of degree m - # + 4 in the expansions

d—’l = ¢1 + 12 + s , $2 = (2@10)3 -+ €¢_>21 + ...,
Fs = (2010)%(2%y) + €sr+ ..., and fs= 2Pn)? + epu+ ...,

which are

(15)

[G1(2P10)? 4 §2(2P10) (2820) + §5(2P)?]Q
(g1 (2®10)% + o' (2%10) (2%20) + §5' (2P0)?1Q (16)
[ (2®10) + "7 (2820) 2Po0) + 35" (28)%]Q, and  §"'(2%0)?Q,

respectively. No small divisor terms of smaller degree appear. Now we determine the
constants d;, ds, d3 so that the integral

¢ = c($1 + dids + dsds + duds) ¥))

does not contain terms with small divisors up to the degree m 4 » 4+ 4. We have the
following equations:

g+ dg' +dg" =0, G+ dg +dg" =0,
3 + digs’ + dss” + dugs’”’ = 0,

which give the values of di, ds, ds. In the same way we can avoid terms with small divisors
of higher degrees.

In the case m = 2, n = 3 we have calculated ci, ¢s, di, ds, s for various values of the
ratio A}2/B'/2, In order to check the computer calculations, we have calculated analyti-
cally the values of ¢y, csin the case m = 2, n = 3, 4 = 0.391, B = 0.9.

The new form of the third integral ¢ is now used in finding the resonant periodic
orbits and their stability.

(18)

III. DETERMINATION OF PERIODIC ORBITS AND THEIR STABILITY

The successive points of intersection of an orbit by a surface of section are, in general,
on a smooth invariant curve. This is true for most initial conditions (except for a set of
very small measure if the perturbation e is sufficiently small; such is the case that we
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86 G. CONTOPOULOS Vol. 153

consider below). We take as surface of section the plane y = 0 in the space #yX, where
& = A%,

Of special interest are the invariant points, which correspond to periodic orbits. Be-
sides a “central” invariant point, corresponding to a stable periodic orbit perpendicular
to the x-axis at one point near the origin, there are other “resonant” invariant points,
corresponding to orbits making # and m oscillations along the x-axis and the y-axis,
respectively. These are stable or unstable. In the first case, nearby orbits are tube orbits
and the corresponding invariant curves are called islands, surrounding the stable in-
variant points.

In order to find experimentally the resonant periodic orbits, a computer program was
developed to give periodic orbits of the above resonance form to any required accuracy.
This program calculates orbits intersecting perpendicularly the x-axis for a given value
of the energy 4. The initial conditions are xy, yo = Xo = 0, Yo = (2k — Axe?)!/%, where
%o takes successive values in the interval —(2k/A4)/2, (2h/ A)!/2, differing by a fixed step.
The calculation stops when y becomes zero for the (2m)th time. (An interpolation formu-
la gives the value of X when y approaches zero, to any required accuracy.) Then if two
successive final values of X have opposite signs, by successive interpolations we find the
initial value of x,, corresponding to the periodic orbit (X = 0), with any required ac-
curacy.

On the other hand, a theoretical search of periodic orbits was made by means of the
third integral, after elimination of the small divisors. A careful elimination of the
small divisors has proved necessary because otherwise higher-order terms of the third
integral may change considerably the results found by using only the first few terms.

Let

¢ = ¢;0 (19)

be the series representing the third integral after elimination of the small divisors; the
zero after the semicolon means that the function is evaluated at the initial point.
We set ¥y = 0 and use the energy integral

Y2 =2h — Ax* — X2, (20)

where % is the total energy, to make ¢ a function of ¥ and X only. From our first paper
on the third integral (Contopoulos 1960) we can see that any term x*X®y°¥Y?hasc¢ + d =
even and b + d = even. Hence if y = 0, the terms that remain in ¢ have ¥ and X in
even powers

It is preferable, for some purposes, to use £ = A!/%x, instead of . Thus ¢ is a function
of ¥ and X? only, and we can write

¢ = ¢+ Xx, (21)

where ¢ contains only %, while ¢x contains % and X2
A closed invariant curve issuing from a point %o, Xo = 0 on the X-axis intersects the
#-axis at the points given by the equation

¢ = 0. (22)

This equation gives, in general, one more solution besides #,. If, however, &, happens to
correspond to a periodic orbit, the two solutions coincide and &, is a double root of equa-
tion (22). Thus the invariant points are given by the solutions of the equation

dd/di = 0. (23)

These are singular points of the curve ¢ = ¢;o because then
o¢/9% = 9¢/9X = 0. (24)
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No. 1, 1968 RESONANT PERIODIC ORBITS 87

In practice, the computer solves equation (23) if ¢ is already known in a truncated
form. In fact, the computer selects only terms independent of X and y, which are of the
form

¢ = ZCie V¢ = ZCxe(2h — &2)dI2 (25)
where d is even. The derivative of ¢ is then
98— T Clages(2h — )9 — dai(2h — ). 26)

The stability of the periodic orbits can be studied as follows. A singular point of the
curve ¢ = ¢, is either isolated or a double point. In the first case, the equation

¢ ¢ s _
o OB+ 22 A AX—I—aXZAX = 27

has no real roots for A%/AX, while, in the second case, it has two real roots, in general.
If X =0, we have 9%$/9%9X = 0; hence the discriminant of the above equation is

_ 4 9% ¢ 9’
oz 9X2 '

Further, for X = 0 we have

¢ _ ¢

ox  0x’ (28)
and

62

9P _ 26x(X = 0). (29)

0X?

Hence, finally, we have stability if the discriminant is negative, or

TP g (X =0)>0, (30)
and instability if the discriminant is positive, or

TP gx (X =0) <0. (31)

The above analysis refers to cases when the periodic orbit intersects the x-axis per-
pendicularly (X = 0). Butit may be that the invariant points corresponding to a periodic
orbit are all outside the x-axis. Then in general there is another periodic orbit that has
two invariant points on the x-axis (Contopoulos 1965). By finding this second periodic
orbit, one can find the approximate position of the invariant points of the first orbit.
A better estimate of their position is found by calculating the islands corresponding to a
nearby tube orbit.

One should remark that the above method does not give all the periodic orbits in a
given potential and a given value of the energy. In order to find resonant periodic orbits
corresponding to a different commensurability (i.e., corresponding to another ratio
#n'/m’, which is also near 4A1/2/B'/?), one has to find another form of the third integral,
by eliminating the small divisors m’A4/2 — n’B!/2, If the perturbation e is not very large,
the various kinds of periodic orbits are completely independent. The corresponding
invariant points and islands are well separated.

This means that the form of the third integral is not unique for a given value of the
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88 G. CONTOPOULOS Vol. 153

energy integral. In some part of the surface of section, a given expression ¢ = ¢;o gives
the positions of the invariant points and the forms of the islands. In other parts, another
form of the third integral is necessary. In fact, an infinity of forms is needed to explain
all the periodic orbits. If, however, we are interested only in the main invariant points
and islands, then one or two forms of the third integral may be sufficient.

IV. APPLICATION

We apply the above method in the case AY/2/B'/?2~ %, In this special case, no reso-
nance phenomena appear when 4'/2/B!/2 is exactly equal to Z (if the perturbation is not
very large). Only for values of A/2/B'/2 somewhat smaller than £ do we have resonant
periodic orbits and tube orbits in general; if the perturbation is moderately large, we
have to go rather far from the resonance to find the resonance phenomena.

Figure 1 gives the positions of the invariant points on the x-axis in the case e = 0.1

039993

A

039992}

039991

0 39990

1 1 1 1 ' 1 1 L 1 e
-004 6] X 004

1

0 39989 4

1 1 Il 1 1 I
-016 -012 -008 008 012 016

F16. 1.-—Positions of the invariant points on the x-axis, when %z = 0.00765, e = 0.1, B = 0.9, and 4
is given on a vertical axis. S and U indicate stable and unstable invariant points. Crosses give the invari-
ant points derived by means of the third integral. The limiting lines to the left and right are x = =+
(2h/ A} (~ £ 0.194).

for various values of 4, when B = 0.9, 2 = 0.00765. When 4 > 0.39993, there is no
resonant periodic orbit making 2 and 3 oscillations along the x-axis and the y-axis, re-
spectively. There is only one periodic orbit near the y-axis, perpendicularly intersecting
the x-axis. The same is true when 4 < 0.39989. When 0.39993 > 4 > 0.39990, there
are three invariant points on the wx-axis, the central one and two resonant invariant
points, one stable (S, Jeft) and one unstable (U, right). When 4 becomes smaller than
0.39990, the unstable invariant point to the right reaches the outer limit (the limiting
curve Ax? + X? = 2k, in the plane x,X, which corresponds to the periodic orbit y = 0)
and disappears. For 0.39990 > 4 > 0.39989, we have only one (stable) resonant
invariant point on the x-axis. When 4 becomes smaller than 0.39989, this point also
reaches the limiting curve and disappears.

Using the third integral ¢ in the form (17), truncated after the terms of seventh de-
gree, we find the positions of the invariant points as indicated by the crosses in the case
4 = 0.39990.

Experiments—0.171, 0.002, 0.189 .
Third integral—0.171, 0.002, 0.190 .

There is only a slight deviation in the case of the periodic orbit to the right.
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No. 1, 1968 RESONANT PERIODIC ORBITS 89

The situation is similar when e = 0.5, except that for a range of values of 4 we have
three resonant invariant points besides the central one. Figure 2 gives the positions of
the invariant points (solid line) and the corresponding positions calculated by means of
the third integral, truncated after the terms of seventh degree (dasked line).

The range of values of 4 for which we have at least one resonant invariant point be-
sides the central one is from about 0.3984 down to about 0.3968. The letters .S and U
mean st)able and unstable orbits, respectively (as found from their characteristic ex-
ponents).

The dashed curve shows the same behavior as the solid curve, although it does not
agree completely with it. In one case (4 = 0.3981), when terms up to the ninth degree
were included in the third integral, the agreement between theoretical results (crosses)
and experimental ones (solid line) was almost complete.

0 3983 : 5

A
0.3983 |
0.3982 [~
0.398! -
0.3980 |-
0.3979 -
0.3978 |-
0.3977 |-

0.3976 -

03975 L
~016 -0.12 -0.08 -0.04 0. +0.04 +0.08 +0.12 +0.16
X

Fic. 2.—Same as in Fig. 1 for & = 0.00765, ¢ = 0.5, B = 0.9. Solid line gives real positions of the
invariant points, while dashed line gives invariant points derived by means of the third integral truncated
after the seventh-order terms. Crosses give invariant points when the third integral is truncated after
the ninth-order terms. o

It is of interest at this point to show the positions of the invariant points calculated
through the third integral truncated after the terms of the third, fourth, fifth, and sixth
degree (Fig. 3).

If the third integral is truncated after the third-order terms (line marked 3), only the
central invariant point is found; the resonance phenomena are not apparent. If the third
integral is truncated after the fourth-order terms (lines marked 4), we eventually have
two, or even three, invariant points, but rather far from the real ones, except for the
left invariant point when A = 0.3975 (and, perhaps, for smaller values of 4, also).
When A4 becomes smaller or larger than the range shown in Figure 3, the two branches
of line 4 tend, presumably, to line 3, giving the central invariant point.

As the number of terms increases to five and six, the curves giving the invariant points
approach more and more the real shape of the curve given by Figure 2, except for a range
of values of 4 between approximately 0.3982 and 0.3977. This is due to the fact that in
this range there are two roots relatively near each other and therefore the value of
3¢/ 3% never becomes very different from zero there (this has been checked directly);
hence, any addition of higher-order terms may change considerably the roots of the
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90 G. CONTOPOULOS

equation d¢/d% = 0. The same kind of deviation (but much smaller) is also seen in
Figure 2 near the center for 4 = 0.3981.

The above results indicate the importance of using a sufficient number of terms of the
third integral in applications in order to get sufficiently accurate results. The use of a
non-convenient form of the third integral or of an insufficient number of terms may give
quite wrong results.

The case € = 1 is similar to the case e = 0.5, but the range of values of 4 for which
resonance phenomena appear (one, two, or three resonant invariant points, besides the
regular [central] invariant point) is much larger, extending from 4 = 0.395 to 4 ~
0.383. The solid line in Figure 4 gives the real positions of the invariant points, while the
dashed curve gives their positions derived by means of the third integral truncated after
the terms of ninth degree. The agreement is rather good, except near 4 = 0.393, where
the usual deviation is observed near the central invariant point. If we truncate the third
integral before the terms of ninth degree, the agreement is worse, as in the case e = 0.5.

03984

A B
0 3983 €09 4 5

T

0 3982
0 3981
03980
03979

013978 | H 4

0 3977

0 3976 1

1 1 1

03975 L +—! ;
-016 -012

-008  -004 0 X 004 008 012 016

Fic. 3.—Expected positions of the invariant points when the third integral is truncated after the third-,
fourth-, fifth, or sixth-order terms.

The limiting lines at the left and right in Figure 4 give the values of Xmax/min = *
(2h/A)!2; thus they are not parallel to the 4-axis. The left branch of the curve extends
down to 4 =~ 0.3825 in this case.

Similar results are also found in the case ¢ = 2 (Fig. 5). In this case, the range of values
for which we have resonance phenomena extends from about 4 = 0.405 (even larger
than 0.4) down to values of 4 even below the “escape’ value 4 ~ 0.302.

For 4 < 0.302, we have open curves of zero velocity, and the moving points may
escape to infinity. This is because the curve of zero velocity Ax? + By? — 2exy® = 2h is
open if ¥ becomes infinite for * < Xmex = (2h/A4)'2, i.e., for A < 8hée’/B? = 0.302. . ..

The invariant point at the left does not reach the outer boundary —(2k/4)'? but
reaches a minimum value ¥ >~ —0.134 for about 4 = 0.325, and for smaller values of 4
it moves to the right. This orbit is stable even beyond the “escape” value of 4 =~ 0.302.
It becomes unstable at about 4 = 0.2995. For smaller values of 4 it moves to the right,
reaching the value x = 0.094 for 4 = 0.20. The “central” invariant point also moves to
the right; it reaches the value x = 0.343 for 4 = 0.12. This orbit was found stable for
all the values of 4 down to 4 = 0.19. Therefore, the stability of the periodic orbits does
not depend directly on the “escape” value of A. A periodic orbit can be stable even when
the curve of zero velocity is open.
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0394

0393

0392

0391

0390

T

0389}

1 1 L 1 1 A 1 1 ] I ]

038gt— 4l 1
- 004 0 004 X 008 012 016

ut
-016 -012

i
-008

F16. 4.—Same asin Fig. 1 for £ = 0.00765, ¢ = 1, B = 0.9. Dashed line gives invariant points derived
by means of the third integral truncated after the ninth-order terms.

041

A
040F

0.39H

0.38

2

-008 -004 O y 004 008 012 016 020

1 " 1 I

[
W
g

070 016 -012

Fic. 5.—Same as in Fig. 1 for # = 0.00765, ¢ = 2, B = 0.9. Horizontal line represents the escape
value of 4. For smaller 4, curves of zero velocity are open.
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The relation between the invariant points and the other invariant curves is shown in
Figures 6-9; these give the invariant curves for various values of 4 in the case B = 0.9,
e =1, 2 = 0.00765.

When 4 = 0.394 (Fig. 6), we have a set of regular invariant points near the central
periodic orbit, on the right of the origin and near the limiting curve, which is a circle
%2+ X? = 2k in the plane & X. We also have three sets of islands. Those to the left of
the origin, on the %-axis, center around the stable invariant point & = —0.058, corre-
sponding to the point x = /412 = —0.093 of Figure 4. Near and to the left of the
origin, there is an unstable invariant point. The invariant curve through it separates the
islands from the inner and outer regular invariant curves. In Figure 6 this limiting in-
variant curve is drawn schematically as a dotted line. Its accurate calculation is very
difficult; it requires too many calculations of orbits near the unstable periodic orbit. In

Fi16. 6 (left).—Form of invariant curves on the surface of section y = 0 of the space ¥yX, in the case
k= 0.00765, e = 1, B = 0.9, A = 0.394. Outermost invariant curve is the circle £? 4 X2 = 2}, corre-
sponding to the periodic orbit y = 0.

F1G. 7 (right).—Same as in Fig. 6 for 4 = 0.391.

reality, no invariant curve exists through the unstable invariant point; the intersections
of orbits near the unstable periodic orbit by a surface of section show a small dispersion,
i.e., they fill a strip of small but finite thickness (Contopoulos 1967). However, in the
present case no such dispersion was discernible.

If A increases beyond 0.394, the stable and unstable invariant points to the left of
the origin approach each other and disappear, together with the islands—e.g., for 4 =
0.395 there are only regular invariant curves everywhere.

As A becomes smaller than about 0.3938, three new sets of islands appear near the
outer limiting curve. One such set is to the right, near the #-axis.

As A decreases, the unstable invariant point to the left of the origin moves to the
right, and for 4 ~0.3926 it coincides with the “central” invariant point. Then the
“regular” invariant curves near the origin disappear. For still smaller 4, e.g., for 4 =
0.391 (Fig. 7), the unstable invariant point has moved to the right of the “central”
invariant point and the set of “regular” invariant curves near the origin reappears. The
invariant curve through the unstable invariant point is also drawn schematically in
Figure 7. Outside it there are invariant curves of the regular type, i.e., invariant curves
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No. 1, 1968 RESONANT PERIODIC ORBITS 93

making one single loop around the central invariant point. Near the outer limiting curve,
however, we have the new sets of islands, and the periodic orbit y = 0 is unstable.

As A decreases still further, the new sets of islands (right to the center near the #-axis,
etc.) approach nearer to the center, while the previous sets of islands (left to the center
near the %-axis, etc.) move outward (Fig. 8, 4 = 0.3895). For smaller 4, the new set of
invariant curves disappears, as the unstable invariant point to the right of the central
invariant point, which moves outward as 4 decreases, coincides with the stable invariant
point at the right, which moves inward. For even smaller 4 (Fig. 9, 4 = 0.389), only
one set of islands near the outer limiting curve remains. As 4 decreases and reaches the
value 4 =~ 0.3825, these islands also disappear and only the regular invariant curves
remain.

g

Fic. 8 (left).—Same as in Fig. 6 for A = 0.3893
F1G. 9 (right).—Same as in Fig. 6 for 4 = 0.389

From the above discussion it follows that the periodic orbit y = 0 is unstable when-
ever A is between approximately 0.3825 and 0.3938. This is verified by calculating the
characteristic exponents of the periodic orbit y = 0.

Figure 10 gives the trace of the monodromy matrix (Wintner 1947). If the trace is
between O and 4, the orbit is stable. In the present case, it is seen that for a range of
values of 4 between 0.3825 and 0.3938 the trace is negative; therefore, the orbity = 0
is unstable. This was expected because the orbits near y = 0, for this range of values of
A4, do not give simple invariant curves near the outer limiting curve, but give also
branches extending inward (Figs. 7-9).

V. CONCLUSIONS

It is evident that the main characteristics of the invariant curves can be easily pre-
dicted if we know the positions of the invariant points, It is even sufficient to know
the invariant points on the %-axis because then the other invariant points can be easily
located approximately.

The stable invariant points are the centers of sets of islands, which correspond to tube
orbits. The unstable invariant points are also important, first, because they separate the
invariant curves of different types (Figs. 6-9) and, second, because any ‘‘dissolution” of
the invariant curves is apparent near the unstable periodic orbits.
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Therefore, instead of calculating many invariant curves, which is a tedious and time-
consuming procedure, one can calculate the main invariant points, corresponding to the
regular and resonant periodic orbits; then the calculation of one or two non-periodic
orbits near the unstable periodic orbits gives the degree of “dissolution” of the invariant
curves.

The initial conditions of the periodic orbits and their stability behavior can be found
by using the correct form of the third integral in each case.

The above considerations can be applied to models of the Galaxy, in order to give the
main types of orbits for a set of values of the energy, without detailed calculations.
The theoretical approach by means of the third integral can be applied if the potential
is given as a polynomial in the variables.

Trace

T

0.0058

€ = |

05
0380 0382 0384 0386 0388 0390 0392 0394
A

-00

F1c. 10.—Trace of the monodromy matrix in the case & = 0.00765, ¢ = 1, B = 0.9, for various values
of A. Shaded area indicates instability.

Part of this work was done while I was a senior research associate of the National
Research Council-National Academy of Sciences at the Institute for Space Studies,
New York. The extensive numerical calculations were made with the help of the IBM
350-75 computer of the Institute for Space Studies and the IBM 1620 computer of the
University of Thessaloniki. I thank Dr. J. Hadjidemetriou for much help in the numerical
calculations.
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